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Abstract

A direct-BEM/Fem method was proposed to analyze the vibration and acoustic radiation characteristics of a submerged

structure. Model parameters of the structure and the fluid-structure interaction due to surrounding water were analyzed by

using FEM and direct BEM. Vibration velocity of the outer hull surface and underwater sound pressure were computed

through modal superposition technique. The direct-BEM/FEM method was first validated by analyzing a submerged

cylindrical shell, then was used to analyze the vibro-acoustic behavior of a submarine stern structure. The results have

demonstrated the direct-BEM/FEM method is more effective than FEM in computing the underwater sound radiation of

the stern structure.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

As an elastic structure, the submarine stern vibrates in the presence of fluid dynamic loads. Especially, the
natural frequencies of the stern structure will change during navigation due to the fluid–structure interaction.
If one of the natural frequencies becomes close to the frequency of exciting forces, the submarine stern will
vibrate intensively. Therefore, prior to a perfect design of the stern structure, the natural behavior should be
accurately simulated by considering the fluid–structure interaction. The vibration induced sound transmission
is a potential threat for submarines, and the acoustic property should be predicted as well during the
process of design, which generally includes acoustic cavity, acoustic radiation and acoustic scatting from the
submerged elastic structure.

An analytical solution to the fluid–structure interaction can be given when structures are in simple shapes
(e.g. sphere or infinite cylinder) and lots of studies have been made in this field during the past decades [1]. But
in real-world problems, structures are usually in complicated shapes. Therefore, it is very difficult to consider
the effect of fluid–structure interaction only by analytic methods. Fortunately, these problems can be
solved by numerous numerical techniques which model elastic structures with finite elements (including
beams, plates, shells and solids). Compared to elastic structures, fluid can be modeled with finite elements,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. The process of computation.
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infinite elements or boundary elements. Combinations of these techniques have been used to deal with the
fluid–structure interaction, for instance, the CFD can calculate viscous flow enclosed by deformable
structures [2].

The first standard approach is FEM [3–8]. In some FEM software, fluid elements are supplied to solve the
fluid–structure interaction problem. Hamdan [3] used two-dimensional, axisymmetric and three-dimensional
finite elements for near-field fluid–structure interaction analysis which is based on the Lagrangian kinematical
description of motion. In addition, only the fluid element can be directly used for an explicit fluid mesh and for
the graphical display of wave motion through the fluid. The main disadvantages of using fluid elements in
finite elements method (FEM) are the need for an approximate radiation boundary condition at the outer fluid
boundary and limitations on mesh size and type (sometimes leading to frequency-dependent fluid meshes [8]),
and the difficulty of generating the fluid mesh.

The boundary element method (BEM) has been widely used to model fluid [9–13]. It is an attractive
technique for the analysis of fluid–structure interaction since only the ‘‘wet’’ surfaces need to be
discretized. For this class of problems, the doubly asymptotic approximation (DDA) is an alternative
approach [10–11]. To obtain the pressure distribution of the fluid, the vibration velocity of the interface is
taken as a boundary condition. However, the vibration velocity of the interface may vary due to the
fluid–structure interaction. Therefore, it is difficult to obtain the velocity boundary condition, especially
for irregularly shaped structures. In practice, the vibration velocity of structures free from fluid is taken
as a boundary condition in the sound transmission computation. This FEM/BEM has not yet been
completely satisfactory.

A compromise between the accuracy of boundary element analysis and the computational efficiency of
finite element analysis is possibly made by fluid infinite elements [14–17]. The typical approach using
infinite elements in structural acoustics is that the structure and a small portion of exterior fluid are
modeled with finite elements and a layer of infinite fluid elements are added to the outer side of the fluid
finite elements. But in practice, the finite element mesh is difficult to obtain when structures are in
complicated shapes.

This work is concerned with an effective combination of direct-boundary element and finite
element (direct—BEM/FEM) for the analysis of vibration and sound transmission of the submarine
stern. The computation procedure is shown in Fig. 1. First, the stern is modeled by finite elements
and the ‘‘dry’’ modal parameters of the structure (i.e. natural frequencies and mode shapes) are obtained by
FEM. Next, the fluid domain is modeled by direct-boundary elements and the ‘‘wet’’ modal parameters
of the stern are derived on the basis of the vibration response of the ‘‘wet’’ interface and the ‘‘dry’’ modal
parameters. Then, the velocity response of the stern under external load is computed. Finally, the sound
pressure is given by direct-BEM. In general, the combination of direct-BEM and FEM can reduce the
number of elements.
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Fig. 2. The shell elements.
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2. Numerical formulation

In this section, the numerical formulation of FEM and direct-BEM is briefly described.

2.1. Shape function of shell elements

The submarine stern is a complicated structure with irregularly shaped wing and rudder and modeled with
beam elements, shell elements and solid elements. On the fluid–structure interface, the structure is modeled by
shell elements which are covered by a layer of fluid boundary elements. The fluid boundary elements inherit all
the necessary physics information from the shell elements on the interface.

Consider the shell element shown in Fig. 2 and suppose u, v, w, yx, yy are displacements along the axes x, y, z

and rotation along the axis x, y, respectively.
Using barycentric coordinates, u, v, w, yx, yy can be given in terms of the node displacements (u1, v1, w1, yx1, yy1),

L, (u4, v4, w4, yx4, yy4), i.e. {u v w yx yy}
T[N]{u}e

¼ [N1 L N20]{u1 v1 w1 yx1 yy1 L u4 v4 w4 yx4 yy4}
T, where ue denotes

the nodal displacement.
The details on element properties, shape functions, coordinate transform and numerical integration are

described in Ref. [18].

2.2. Finite element formulation

The motion equation of the finite element model of the structure is as follows:

Ms €us þ Cs _us þ Ksus ¼ Fs, (1)

where

Ms ¼
X

e

Me
s ; Ks ¼

X
e

Ke
s ; Cs ¼

X
e

Ce
s ; Fs ¼

X
e

Fe
s ,

Me
s ¼

Z
A

NTNrhdA ¼

ZZ
NTNrh Jj jdZdz; Ke

s ¼

Z
A

BTDB dA ¼

ZZ
BTDB Jj jdZdz,

Ce
s ¼

Z
Ve

mNTNdV e; Fe
s ¼

Z
Ve

NTf V dV e þ

Z
Se

NTf S dSe.

The subscript ‘‘s’’ stands for the structure and the superscript ‘‘e’’ stands for elements. MsARm�m is the
structural mass matrix, CsARm�m is the structural damping matrix, KsARm�m is the structural stiffness
matrix, usARm� 1 is the node displacement vector and FsARm� 1 is load vector. The structural mass and
stiffness matrices are obtained by assembling individual element matrices. The damping matrix is used to give
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a constant damping ratio. A is the mid-surface area of the element, |J| is the determinant of Jacobin matrix,
r is the density of the shell and h is the thickness of the element, fv is the distributed volume load, fS is the
distributed surface load.

According to the vibration theory, the following property of modal orthogonality holds:

FT
s MsFs ¼ Im�m,

FT
s KsFs ¼ Os, ð2Þ

where Im�m is the identity matrix, Fs ¼ f1;f2; . . . ;fm

� �
; Os ¼ diagðo2

1; . . . ;o
2
mÞ; fi;oiði ¼ 1�mÞ are the ith

mode vector and the ith natural frequency, respectively.
As indicated by Eq. (2), the stiffness and mass matrices can be directly computed if we have obtained mode

vectors and natural frequencies.
2.3. Boundary element formulation

When harmonic acoustic waves are considered, the linearized wave equation reduces to Helmholtz
equation. Consider the Helmholtz pressure Eq. (3) in pressure Pf

r2Pf þ k2Pf ¼ 0 (3)

with the pressure boundary condition

qPf

qn
¼ ro2uf on the flexible boundary; (4)

where r2, n and r are the Laplacian operator, the unit outward normal at the surface point and the density of
the fluid, respectively, k ¼ o/c0 is the wave number, o is the angular frequency, c0 is the speed of sound in
water, and the subscript ‘‘f’’ stands for the fluid.

Suppose the fluid is incompressible, the Helmholtz Eq. (3) reduces to

r2Pf ¼ 0. (5)

A weighting function P̄f can be introduced such that Pf has continuous first derivative within the fluid
region S. The weighted residual description can be written asZ

S
ðr2Pf ÞP̄f dS ¼

Z
G2

qPf

qn
�Q0

� �
P̄f dG�

Z
G1

ðPf � P0ÞP̄f dG (6)

and the boundary condition is

Pf

��
G1 ¼ P0;

qPf

qn

����
G2
¼ Q0,

where P̄f can be the fundamental solution to the Laplace equation. Applying the Green’s second identity
theorem to Eq. (6) and using the standard boundary element procedure [9], we can get the boundary integral
equation:

CiPfi þ

Z
G

Pf

qP̄f

qn
dG ¼

Z
G

P̄f

qPf

qn
dG, (7)

where Ci is the Green’s constant which can be calculated by surrounding the boundary point i with a small
sphere of radius e and taking each term in Eq. (7) in the limit as e-0.

In Eq. (7), there exist boundary integrals. For the submerged stern, the integration is computed on a series
of internal cells created by dividing the fluid domain. Here, isoparameteric quadrilateral and triangular linear
elements are used in the discritization of the boundary (Fig. 3).
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Fig. 3. Boundary in BEM.
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Assume that the boundary of the domain is discretized into L isoparameteric quadrilateral and triangular
linear elements with L nodes, Eq. (7) can be discretized and expressed in matrix form as

CidijPfi þ
XL

j¼1

ĤijPfj ¼
XL

j¼1

Gij

qPf

qn

� �
j

. (8)

Combining the constant term C with Ĥ matrix, Eq. (8) takes the form

HPf ¼ G
qPf

qn
, (9)

where

H ¼
XL

j¼1

Cidij þ Ĥij ; dij ¼
1 i ¼ j;

0 iaj;

(

G ¼
XL

j¼1

Gij ; Ĥij ¼

Z
Gi

qP̄f

qn
dG; Gij ¼

Z
Gi

P̄f dG.

Combining Eqs. (4) and (9), we can get

HPf ¼ Gro2uf . (10)

2.4. Direct-BEM/FEM formulation

In Fig. 4, S1 represents the structure, S2 is the fluid domain inside and outside the structure, G is the
boundary of the fluid domain.

To couple the boundary elements and the finite elements at the fluid–structure interface, the following
compatibility and equilibrium conditions are imposed:

uf ¼ us; _uf ¼ _us, (11)

Ps þ Pf ¼ 0, (12)

where the subscript ‘‘f’’ stands for boundary element nodes of the fluid and ‘‘s’’ stands for shell element nodes
of the structure at the fluid–structure interface.
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Fig. 4. The model of direct-BEM/FEM.
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Under the equilibrium condition (12), the motion Eq. (1) of undamped structures can be given in the
frequency domain:

KS � o2MS

� �
uSf g ¼ Ff g, (13)

where

F ¼ �AT
s Ps ¼ AT

s Pf ; AS ¼
X

e

Z
G
NNT dG.

In light of Eqs. (10) and (13), the governing equation of the coupled fluid–structure system can be expressed as

KS � o2MS �AT
s

�Gro2 H

" #
uf

Pf

( )
¼ 0. (14)

The eigenvalues of the coupled fluid–structure system can be determined from Eq. (14). Given the ‘‘dry’’
natural frequencies and mode vectors of the structure, the corresponding ‘‘wet’’ natural frequencies and mode
vectors of the coupled system can be computed from the following equation:

Os � o2Im�m �FT
s A

T
s

�ro2GFs H

" #
xs

Pf

" #
¼

0

0

� 	
, (15)

where us ¼ Fsxs. Suppose only the first mr(mr5m) modes of the structure are considered, then us can be
approximately expressed as us � ~Fs

~xs, where ~Fs ¼ f1;f2; . . . ;fmr

� �
composed of the first mr mode vectors, and

Eq. (15) reduces to

~Os � o2Imr�mr � ~F
T

s A
T
s

�ro2G ~Fs H

" #
~xs

Pf

" #
¼

0

0

� 	
, (16)

where ~Os ¼ diag ðo2
1; . . . ;o

2
mrÞ. The stable state response of the coupled fluid–structure system under periodical

load Fload satisfies

~Os � o2Imr�mr � ~F
T

s A
T
s

�ro2G ~Fs H

" #
~xs

Pf

" #
¼

~F
T

s F load

0

" #
. (17)

Therefore, the stable state response can be approximately computed from Eq. (17).
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2.5. Sound transmission formulation

There are two fundamental methods used in the BEM analysis. One is the direct BEM known as
collocation, and the other is indirect BEM known as variation. The difference between the two methods is that
the former uses velocity whereas the latter uses the jump of velocity as the primary unknowns. Here, we
consider the collocation method to obtain sound transmission. The equation for the description of sound
transmission is

HP ¼ Gro _uf , (18)

where _uf ¼ ous is the vibration velocity of the fluid at the interface.

3. Numerical example

3.1. Numerical results and discussion

Fig. 5 is a submerged cylindrical model with flat end closures. Computation of the fluid loaded resonances
of the model using the direct- BEM/FEM is illustrated in this example. Parameters involved in the illustration
are follows:
R ¼ 5m
 mean shell radius

L ¼ 60m
 shell length

H ¼ 0.05m
 shell/end plate thickness

E ¼ 196GPa
 Young’s modulus

m ¼ 0.3
 Poisson’s ratio

rs ¼ 7900 kgm�3
 shell density

rf ¼ 1000 kgm�3
 fluid density

c ¼ 1500m s�1
 fluid speed of sound
In the direct-BEM/FEM model, the interface between the cylindrical shell and fluid consists of 1984
isoparametric linear shell elements. Fourteen natural frequencies of the cylindrical shell in-vacuo and in-fluid
Fig. 5. Cylindrical shell with flat and closures.
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Table 1

In-vacuo and in-fluid natural frequencies of the cylindrical shell with flat end plate

No. In vacuo In fluid No. In vacuo In fluid

Direct-BEM/FEM Approx. theory Direct-BEM/FEM Approx. theory

1 2.711 1.13 1.11 8 11.298 6.77 6.18

2 3.846 1.82 1.77 9 12.125 6.64 6.67

3 4.338 1.43 1.38 10 15.646 8.70 8.65

4 7.039 3.84 3.57 11 16.749 8.91 8.66

5 9.218 4.79 4.70 12 18.484 8.14 7.75

6 9.534 4.27 4.22 13 22.525 12.83 12.6

7 10.335 4.94 4.82 14 27.973 15.13 14.7

Fig. 6. The stern model.
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are computed by FEM, the direct-BEM/FEM and approximate theory (Refs. [1,19–20]), respectively,
and given in Table 1. Results in this table show that the added mass effect has been predicted by the direct-
BEM/FEM and the approximate theory, and the two methods are in good agreement for these fluid–structure
interaction modes. Therefore, in view of the similarity between the prediction of the direct-BEM/FEM and the
approximate theory, the direct-BEM/FEM is reliable.

3.2. Numerical results and discussion

Fig. 6 is the stern model, which is discretized with isoparametric linear shell elements, beam elements and
solid elements. The adjacent infinite fluid domain is modeled with isoparameteric quadrilateral and triangular
linear boundary elements. The total number of boundary elements is 26588.

Fig. 7 is the first 150 ‘‘wet’’ natural frequencies of the stern. It is shown that the ‘‘wet’’ frequencies
are lower than the corresponding ‘‘dry’’ frequencies but the two curves become closer as the frequency
increases, which is due to the decreased mass effect of fluid in the fluid–structure interaction. Figs. 8 and 9
are, respectively, the surface velocity of the submerged stern and the corresponding sound pressure
at Node 1250.



ARTICLE IN PRESS

Fig. 7. The ‘‘dry’’ and ‘‘wet’’ frequencies of the stern.

Fig. 8. Predicted velocity at node 1250.
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4. Comparison of FEM and direct-BEM/FEM

In Table 2, the ‘‘wet’’ frequencies of Model are obtained by FEM and direct-BEM/FEM, respectively. From
this table, we can see that the number of elements has been drastically reduced in the direct-BEM/FEM, and
FEM has not given all the ‘‘wet’’ natural frequencies of the fluid–structure system as the direct-BEM/FEM.
Furthermore, the computation time of FEM is almost 4 times that of the direct-BEM/FEM, but this
comparison is made only on a PC with single Intel P4 CPU (2.0 GHz).
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Fig. 9. Predicted sound pressure near node 1250.

Table 2

Computation results of the two numerical methods

FEM Direct-BEM/FEM

Number of elements 215876 26588

Number of nodes 93438 8345

Natural frequencies (Hz) 1 5.7 5.8

2 — 6.9

3 — 7.4

4 — 9.6

5 12.6 12.3

6 — 14.8

7 19.1 18.7

8 — 23.9

9 31 30.1

Computation time E49 h E12 h

Z. Tong et al. / Journal of Sound and Vibration 299 (2007) 645–655654
5. Conclusions

To predict the sound radiation of irregularly shaped structures in the presence of fluid as well as to reduce
the time of numerical computation, the direct-BEM/FEM technique is introduced. In this technique, modal
parameters of the structure without fluid interaction or ‘‘dry’’ parameters are first obtained and the ‘‘wet’’
modal parameters of the fluid–structure coupled system and the sound radiation are subsequently computed.
As compared with the method using FEM only, this approach has vastly reduced the number of elements and
nodes as well as the time of numerical computation, and modal parameters are completely obtained.
Therefore, the effectiveness of the direct-BEM/FEM technique has been numerically demonstrated in the
analysis of fluid–structure coupled systems.
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